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Stretched exponential relaxation for growing interfaces in quenched disordered media
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We study the relaxation for growing interfaces in quenched disordered media. We use a directed percolation
depinning model introduced by Tang and Leschhorn ferlldimensions. We define the two-time autocorre-
lation function of the interface height(t’',t) and its Fourier transform. These functions depend on the
difference of timeg—t’ for long enough times, this is the steady-state regime. We find a two-step relaxation
decay in this regime. The long time tail can be fitted by a stretched exponential relaxation function. The
relaxation timer,, is proportional to the characteristic distance of the clusters of pinning cells in the direction
parallel to the interface and it diverges as a power law. The two-step relaxation is lost at a given wavelength
of the Fourier transform, which is proportional to the characteristic distance of the clusters of pinning cells in
the direction perpendicular to the interface. The stretched exponential relaxation is caused by the existence of
clusters of pinning cells and it is a direct consequence of the quenched noise.
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[. INTRODUCTION systems is based on the percolation transition of the
Kasteleyn-Fortuin and Coniglio-Klein clustg#], here disor-
For decades, the investigation of growing surfaces ander is not needed to obtain nonexponential relaxaf®in
interfaces has attracted much attention due to its importandgecently, Colaiori and Moorg9] have found a stretched ex-
in many fields, such as motion of liquids in porous media,ponential relaxation for the KPZ equation with annealed
growth of bacterial colonies, crystal growth, fronts of fire, noise.
etc. In these problems we have a nonequilibrium interface. In this paper, we use the DPD model proposed by Tang
The d-dimensional interface described by a single valued-and LeschhoriTL) [2] in order to investigate the relaxation
function h(x,t) evolves in a @+ 1)-dimensional medium. of the two-time autocorrelation functions in quenched disor-
The disorder affects the motion of the interface and leads tdered media at the steady-state regime. We relate the relax-
its roughness. A phenomenological nonlinear Langevin equaation properties to the clusters of pinning cells. The paper is
tion, the Kardar-Parisi-Zhang equati¢dKPZ) [1], and the organized as follows. In Sec. Il we present the model and
directed percolation depinningDPD) models[2,3] have  some properties of the clusters of pinning cells. In Sec. llI
been used in order to study growing interfaces. Two mairthe steady-state relaxation is studied. Finally, in Sec. IV we
kinds of disorder have been proposed in these models: thgresent some conclusions.
annealed noise that depends only on time and the quenched
disorder due to the inhomogeneity of the media, which does Il. THE MODEL
not depend on time. In the DPD models the disorder is
guenched and they describe very well some experiments In the TL model for I+ 1 dimensiong2], the advance of
such as the growth of bacterial colonies and the motion ofhe fluid through the media is modeled by a driving fopce
liguids in porous media. These models were proposed simulwhile the disorder of the media, that brakes this advance, is
taneously by Tang and Leschhd] and Buldyrewet al.[3].  represented by a quenched noise in the substratum. The in-
In many glassy systems a nonexponential relaxation it¢erface grows in a square lattice of edbewith periodic
found when they are close to some temperature above tH@oundary conditions. We assign a random pinning fay@g
static transition. As an example, in structural glasses a twodniformly distributed in the intervdl0,1] to every cell of the
step relaxation decay is found near the so-called “ideal glassquare lattice. For a given applied driving forpe-0 , we
transition” [4]. The long relaxation step has the stretchedcan divide the cells into two groups: those witfr)<p

exponential form (free cellg, and those witlg(r) > p (pinning cellg. Denoting
by g the density of pinning cells on the lattice, we haye
f(t)=foexd —(t/7,)"], (1) =1-—p for 0<p<1 andq=0 for p=1. The interface is
specified completely by a set of integer column heidghts
where 0<8<1 does not depend on the temperature. Therdi=1, ... L). At t=0 all columns are assumed to have the

are two mechanisms driving nonexponential relaxation. Irsame height, which is zero. During growth, a column is se-
disordered systems such as spin glasses this behavior lgcted at random, say coluninand its height is compared
caused by the existence of nonfrustrated ferromagnetic-typeith those of the neighbor columns{1) and (+1). The
clusters of interactiong5] which is a direct consequence of growth event is defined as follows.Hif is greater than either
the quenched disord¢6]. Another mechanism in frustrated h;_, or h;,; by two or more units, the height of the lower of
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the two columnsi(—1) and (+ 1) is incremented in onén 1 T
case of the two being equal, one of them is chosen with equal

probability). In the opposite casé; <min(h,_,,h;,1)+2, the 0sk |

columni advances by one unit provided that the cell to be

occupied is a free cell. Otherwise no growth takes place. In I

this model, the time unit is defined as one growth attempt. In 0.6 \ 7
numerical simulations at each growth attempt the tinie Ck(t-t') . S

increased byst, where st=1/L. Thus, afterL growth at- 0.4 N i
tempts the time is increased in one unit. In our simulations |
we useL =10000 and take the averages over 100 different \

realizations of quenched noise. 0.21- 7

Clusters of pinning cells

As it has been shown in RdR2], this model has a depin-
ning transition at a driving forcg.=0.461. For driving
forces below the critical onp.., the advance of the interface
is halted(pinning phasg while above this driving force the
interface moves without stoppingmoving phasg At the
transition, the characteristic leng¢hof the pinned regions

diverges. A directed percolation cluster of pinning cells,
which extends over the whole system appears in the pinnin

phase. In the moving phase, a typical connected cluster
pinned cells extends over a distance of the ordef;oh the

direction parallel to the interface and a distance of the order

of £, in the direction perpendicular to the interface. On bOth%nd second relaxation step depends on the wave nukaber

sides of the percolation transition, the two lengths have
power-law behavioré|~[p—p| "l and & ~|p—pg ",
with »=1.733:0.001 andv, =1.097£0.001. £, sets a
characteristic scale for the height whig sets characteristic

scales for both the distance parallel to the interface and th

time. For the mean interface height the scaling fdttt)
~¢& ®(t/¢) is obtained, denotingb a scaling function
which is different for the two phases. In the moving phas
there is a crossover from a power-law growfit) ~t”- /I at
t<§) to a linear behavioH(t)=vt at t>§. The steady-
state velocity can be expressedd®)~(p—pc) "I~ .

Ill. STEADY-STATE RELAXATION

We define the two-time autocorrelation function of the

surface height as

! 1 !
Ct' =7 2 alhy(t)=hy(v), @
where §(x) is the 6 function. Its Fourier transform is
1 o
Cult' )= > e i) =holk 3)
i

wherek is the wave number.

For long enough times,'> ¢, these functions depend
only on the difference of times—t’, this is the steady-state
regime whereH(t)=wvt. This regime is reached at longer
times when we approach to the critical driving forpg.
Figure 1 showsC,(t—t') for p=0.5 andk= = and for dif-
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FIG. 1. C(t—t") for p=0.5 andk= 7 and for different initial
timest’=10? (long dashed linge 1¢° (dashed ling 10* (dotted

line), and 18 (solid line). Dotted and solid lines overlap for any
—t'.

rent initial timest’=10%, 1%, 10*, and 10. As we see
«(t—t") is independent of’ whent’=10* for this value of

We find a two-step relaxation decay in the steady-state
regime. We can see in Fig. 2 that the time interval of the first

evertheless, the form of the second relaxation step does not
depend onk. For small enouglk we only have one-step
relaxation process. So, there is a wave nuniQewhere the

o-step relaxation decay is lost fark,. Figure 3 shows

«(t) for k=7 and different values of the driving forqe
The two-step relaxation decay is observed from the highest
value of p=0.95, but the time interval of the second step
increases whermp is decreased, i.e., when the system ap-
proaches to the criticality. This behavior is also found in
other glassy systems, where the time interval of the second
relaxation step increases when the systems approach to the
critical temperature. As we can see in Fig. 4, the second
relaxation step can be fitted by a stretched exponential relax-
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FIG. 2. C(t) in the steady-state regime fp=0.5 andk=
(solid line), 7r/2 (dotted ling, 7/3 (dashed ling 7/4 (long dashed
line), and 7/5 (dot-dashed ling
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FIG. 3. Cy(t) in the steady-state regime fdt== and p
=0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.68, 0.56, 0.55, 0.54, FIG. 5. Log-log plot of the relaxation time,, obtained by the
0.53, 0.52,0.51, 0.5, 0.49, 0.48, 0.475, and @fa¥m left to righ).  stretched exponential fit in Fig. 4, as a functionpf p,, for p
=0.56, 0.55, 0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.475, and
ation function Eq.(1) with the exponen{8=0.805-0.05.  0.47. The solid curve is a power-law function,=0.275@{
This exponent is in practice independenpaind it bringsto  —0.462) 173 Inset: log-log plot of . as a function op—p., for
the master equation p=0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.475, and 0.47. The solid
curve is a power law function,=1.25(p—0.46) 1%,
Cu(H)=Ci(t/7,) 4
- +0.001. This means that, is proportional to the character-
for t>7,, whereCy(t/7,) does not depend op. In glassy istic distance of the clusters of pinning cells in the direction

systems Eq(4) is also called time-temperature superpositionparajlel to the interfacej, which also diverges as,~ &

principle [4], because the temperature plays the role of tha(p_ Do)l

driving force in that systems. In the inset of Fig. 4 we show c;n obtain a wavelength,=2/k

an equivalent t_|me-dr|vmg force superposition principle for erpendicular to the interface from the wave numbegr

our system. This stretched exponential relaxation means thgf, - . e two-step relaxation is lost. In the inset of Fig. 5 we

in the system there is a broad distribution of relaxation times . N . '

[10] show)\, as a function of p—p.). This length diverges as a
The relaxation timer, can be obtained from the fit of piowei law )‘eoc(‘%_ pC). L with _pc=|0.46ﬁ O'Oﬁ and YL

C,(t) with a stretched exponential function, which is shown ~ 1-1*0-01, so thai. is proportional to the characteristic

in Fig. 5. We see that it is very well fitted by a power law distance of the clusters of pinning cells in the direction per-

7.%(p—pe) "l where p.=0.462:0.001 and »j=1.733 Pendicularto the interface,e~&, ~(p—pc) -
We see that the characteristic length of the clusters of

— pinning cells in the direction parallel to the interfagesets

] the time scale of the stretched relaxation funcﬁg(tlgu).

On the other hand, the stretched relaxation step is lost for
A=\, that is, forh=¢, . So, the stretched exponential re-
laxation is caused by the clusters of pinning cells.

e in the direction

1

C (D01t
L IV. CONCLUSIONS

We have studied relaxation properties for growing inter-
faces in quenched disordered media. We have used the TL
P bt model in which properties of clusters of pinning cells are
known. We have studied the relaxation properties of the Fou-
rier transform of the autocorrelation of the surface height and

FIG. 4. Log-log plot ofC,(t), wherek= andp=0.56, 0.55, found a two-step relaxation process in which the second step
0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.475, and (i left to 1S Well fitted by a stretched relaxation function wifh
right). Dashed curves are fitting functions corresponding to the=0.805005. The relaxation time diverges as a power law
stretched exponential functions. Inset: time-driving force superpo@nd it is proportional to the characteristic distance of the
sition principle. The dashed curve is a stretched exponential funcelusters of pinning cells in the direction parallel to the inter-
tion with =0.8. face. The form of the second step relaxation does not depend

0.01
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on the wave number of the Fourier transform. This step ixonsequence of the quenched noise as it happens in other
lost for a given wave length, which is proportional to the glassy systemgg].

characteristic distance of the clusters of pinning cells in the

direction perpendicular to the interface. From these results, ACKNOWLEDGMENT
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