
PHYSICAL REVIEW E 66, 031403 ~2002!
Stretched exponential relaxation for growing interfaces in quenched disordered media
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We study the relaxation for growing interfaces in quenched disordered media. We use a directed percolation
depinning model introduced by Tang and Leschhorn for 111 dimensions. We define the two-time autocorre-
lation function of the interface heightC(t8,t) and its Fourier transform. These functions depend on the
difference of timest2t8 for long enough times, this is the steady-state regime. We find a two-step relaxation
decay in this regime. The long time tail can be fitted by a stretched exponential relaxation function. The
relaxation timeta is proportional to the characteristic distance of the clusters of pinning cells in the direction
parallel to the interface and it diverges as a power law. The two-step relaxation is lost at a given wavelength
of the Fourier transform, which is proportional to the characteristic distance of the clusters of pinning cells in
the direction perpendicular to the interface. The stretched exponential relaxation is caused by the existence of
clusters of pinning cells and it is a direct consequence of the quenched noise.
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I. INTRODUCTION

For decades, the investigation of growing surfaces
interfaces has attracted much attention due to its importa
in many fields, such as motion of liquids in porous med
growth of bacterial colonies, crystal growth, fronts of fir
etc. In these problems we have a nonequilibrium interfa
The d-dimensional interface described by a single valu
function h(x,t) evolves in a (d11)-dimensional medium
The disorder affects the motion of the interface and lead
its roughness. A phenomenological nonlinear Langevin eq
tion, the Kardar-Parisi-Zhang equation~KPZ! @1#, and the
directed percolation depinning~DPD! models @2,3# have
been used in order to study growing interfaces. Two m
kinds of disorder have been proposed in these models:
annealed noise that depends only on time and the quen
disorder due to the inhomogeneity of the media, which d
not depend on time. In the DPD models the disorder
quenched and they describe very well some experim
such as the growth of bacterial colonies and the motion
liquids in porous media. These models were proposed sim
taneously by Tang and Leschhorn@2# and Buldyrevet al. @3#.

In many glassy systems a nonexponential relaxation
found when they are close to some temperature above
static transition. As an example, in structural glasses a t
step relaxation decay is found near the so-called ‘‘ideal g
transition’’ @4#. The long relaxation step has the stretch
exponential form

f ~ t !5 f 0 exp@2~ t/ta!b#, ~1!

where 0,b,1 does not depend on the temperature. Th
are two mechanisms driving nonexponential relaxation.
disordered systems such as spin glasses this behavi
caused by the existence of nonfrustrated ferromagnetic-
clusters of interactions@5# which is a direct consequence o
the quenched disorder@6#. Another mechanism in frustrate
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systems is based on the percolation transition of
Kasteleyn-Fortuin and Coniglio-Klein cluster@7#, here disor-
der is not needed to obtain nonexponential relaxation@8#.
Recently, Colaiori and Moore@9# have found a stretched ex
ponential relaxation for the KPZ equation with anneal
noise.

In this paper, we use the DPD model proposed by Ta
and Leschhorn~TL! @2# in order to investigate the relaxatio
of the two-time autocorrelation functions in quenched dis
dered media at the steady-state regime. We relate the re
ation properties to the clusters of pinning cells. The pape
organized as follows. In Sec. II we present the model a
some properties of the clusters of pinning cells. In Sec.
the steady-state relaxation is studied. Finally, in Sec. IV
present some conclusions.

II. THE MODEL

In the TL model for 111 dimensions@2#, the advance of
the fluid through the media is modeled by a driving forcep,
while the disorder of the media, that brakes this advance
represented by a quenched noise in the substratum. Th
terface grows in a square lattice of edgeL with periodic
boundary conditions. We assign a random pinning forceg(r )
uniformly distributed in the interval@0,1# to every cell of the
square lattice. For a given applied driving forcep.0 , we
can divide the cells into two groups: those withg(r )<p
~free cells!, and those withg(r ).p ~pinning cells!. Denoting
by q the density of pinning cells on the lattice, we haveq
512p for 0,p,1 and q50 for p>1. The interface is
specified completely by a set of integer column heightshi
( i 51, . . . ,L). At t50 all columns are assumed to have t
same height, which is zero. During growth, a column is
lected at random, say columni, and its height is compared
with those of the neighbor columns (i 21) and (i 11). The
growth event is defined as follows. Ifhi is greater than eithe
hi 21 or hi 11 by two or more units, the height of the lower o
©2002 The American Physical Society03-1
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the two columns (i 21) and (i 11) is incremented in one~in
case of the two being equal, one of them is chosen with eq
probability!. In the opposite case,hi,min(hi21,hi11)12, the
column i advances by one unit provided that the cell to
occupied is a free cell. Otherwise no growth takes place
this model, the time unit is defined as one growth attempt
numerical simulations at each growth attempt the timet is
increased bydt, wheredt51/L. Thus, afterL growth at-
tempts the time is increased in one unit. In our simulatio
we useL510 000 and take the averages over 100 differ
realizations of quenched noise.

Clusters of pinning cells

As it has been shown in Ref.@2#, this model has a depin
ning transition at a driving forcepc50.461. For driving
forces below the critical onepc , the advance of the interfac
is halted~pinning phase!, while above this driving force the
interface moves without stopping~moving phase!. At the
transition, the characteristic lengthj of the pinned regions
diverges. A directed percolation cluster of pinning ce
which extends over the whole system appears in the pinn
phase. In the moving phase, a typical connected cluste
pinned cells extends over a distance of the order ofj i in the
direction parallel to the interface and a distance of the or
of j' in the direction perpendicular to the interface. On bo
sides of the percolation transition, the two lengths hav
power-law behaviorj i;up2pcu2n i and j';up2pcu2n',
with n i51.73360.001 andn'51.09760.001. j' sets a
characteristic scale for the height whilej i sets characteristic
scales for both the distance parallel to the interface and
time. For the mean interface height the scaling formH(t)
'j'F(t/j i) is obtained, denotingF a scaling function
which is different for the two phases. In the moving pha
there is a crossover from a power-law growthH(t);tn' /n i at
t!j i to a linear behaviorH(t)5vt at t@j i . The steady-
state velocity can be expressed asv(p);(p2pc)

n i2n'.

III. STEADY-STATE RELAXATION

We define the two-time autocorrelation function of t
surface height as

C~ t8,t !5
1

L (
j

d~hj~ t8!2hj~ t !!, ~2!

whered(x) is thed function. Its Fourier transform is

Ck~ t8,t !5
1

L (
j

e2 i [hj (t8)2hj (t)]k, ~3!

wherek is the wave number.
For long enough times,t8@j i , these functions depen

only on the difference of timest2t8, this is the steady-stat
regime whereH(t)5vt. This regime is reached at longe
times when we approach to the critical driving forcepc .
Figure 1 showsCk(t2t8) for p50.5 andk5p and for dif-
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ferent initial timest85102, 103, 104, and 105. As we see
Ck(t2t8) is independent oft8 whent8>104 for this value of
p.

We find a two-step relaxation decay in the steady-st
regime. We can see in Fig. 2 that the time interval of the fi
and second relaxation step depends on the wave numbk.
Nevertheless, the form of the second relaxation step does
depend onk. For small enoughk we only have one-step
relaxation process. So, there is a wave numberke where the
two-step relaxation decay is lost fork,ke . Figure 3 shows
Ck(t) for k5p and different values of the driving forcep.
The two-step relaxation decay is observed from the high
value of p50.95, but the time interval of the second st
increases whenp is decreased, i.e., when the system a
proaches to the criticality. This behavior is also found
other glassy systems, where the time interval of the sec
relaxation step increases when the systems approach to
critical temperature. As we can see in Fig. 4, the seco
relaxation step can be fitted by a stretched exponential re

FIG. 1. Ck(t2t8) for p50.5 andk5p and for different initial
times t85102 ~long dashed line!, 103 ~dashed line!, 104 ~dotted
line!, and 105 ~solid line!. Dotted and solid lines overlap for anyt
2t8.

FIG. 2. Ck(t) in the steady-state regime forp50.5 andk5p
~solid line!, p/2 ~dotted line!, p/3 ~dashed line!, p/4 ~long dashed
line!, andp/5 ~dot-dashed line!.
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ation function Eq.~1! with the exponentb50.80560.05.
This exponent is in practice independent ofp and it brings to
the master equation

Ck~ t !5Ck̃~ t/ta! ~4!

for t.ta , whereCk̃(t/ta) does not depend onp. In glassy
systems Eq.~4! is also called time-temperature superpositi
principle @4#, because the temperature plays the role of
driving force in that systems. In the inset of Fig. 4 we sh
an equivalent time-driving force superposition principle f
our system. This stretched exponential relaxation means
in the system there is a broad distribution of relaxation tim
@10#.

The relaxation timeta can be obtained from the fit o
Ck(t) with a stretched exponential function, which is show
in Fig. 5. We see that it is very well fitted by a power la
ta}(p2pc)

2n i where pc50.46260.001 and n i51.733

FIG. 3. Ck(t) in the steady-state regime fork5p and p
50.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.68, 0.56, 0.55, 0
0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.475, and 0.47~from left to right!.

FIG. 4. Log-log plot ofCk(t), wherek5p andp50.56, 0.55,
0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.475, and 0.47~from left to
right!. Dashed curves are fitting functions corresponding to
stretched exponential functions. Inset: time-driving force super
sition principle. The dashed curve is a stretched exponential fu
tion with b50.8.
03140
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60.001. This means thatta is proportional to the character
istic distance of the clusters of pinning cells in the directi
parallel to the interfacej i , which also diverges asta;j i
;(p2pc)

2n i.
We can obtain a wavelengthle52p/ke in the direction

perpendicular to the interface from the wave numberke

where the two-step relaxation is lost. In the inset of Fig. 5
showle as a function of (p2pc). This length diverges as a
power law le}(p2pc)

2n' with pc50.4660.01 and n'

51.160.01, so thatle is proportional to the characteristi
distance of the clusters of pinning cells in the direction p
pendicular to the interface,le;j';(p2pc)

2n'.
We see that the characteristic length of the clusters

pinning cells in the direction parallel to the interfacej i sets
the time scale of the stretched relaxation functionCk̃(t/j i).
On the other hand, the stretched relaxation step is lost
l>le , that is, forl*j' . So, the stretched exponential r
laxation is caused by the clusters of pinning cells.

IV. CONCLUSIONS

We have studied relaxation properties for growing int
faces in quenched disordered media. We have used the
model in which properties of clusters of pinning cells a
known. We have studied the relaxation properties of the F
rier transform of the autocorrelation of the surface height a
found a two-step relaxation process in which the second
is well fitted by a stretched relaxation function withb
50.8056005. The relaxation time diverges as a power la
and it is proportional to the characteristic distance of
clusters of pinning cells in the direction parallel to the inte
face. The form of the second step relaxation does not dep

4,

e
-

c-

FIG. 5. Log-log plot of the relaxation timeta , obtained by the
stretched exponential fit in Fig. 4, as a function ofp2pc , for p
50.56, 0.55, 0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.475,
0.47. The solid curve is a power-law functionta50.275(p
20.462)21.733. Inset: log-log plot ofle as a function ofp2pc , for
p50.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.475, and 0.47. The s
curve is a power law functionle51.25(p20.46)21.1.
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on the wave number of the Fourier transform. This step
lost for a given wave lengthle which is proportional to the
characteristic distance of the clusters of pinning cells in
direction perpendicular to the interface. From these resu
we can say that the stretched exponential relaxation beha
is caused by the clusters of pinning cells, which is a dir
-
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consequence of the quenched noise as it happens in o
glassy systems@6#.
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